2020

MATHEMATICS — HONOURS

Sixth Paper

(Module - XI)

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Symbols have their usual meanings.

Group - A

[Vector Calculus - II]

(Marks: 10)

- 1. Answer any one question:
 - (a) Verify Stoke's theorem for a vector field defined by $\vec{F} = (x^2 y^2)\hat{i} + 2xy \hat{j}$ in the rectangular region in xy-plane bounded by the straight lines x = 0, x = 5, y = 0, y = 8;
 - (b) Prove that for any scalar function $\varphi(x, y, z)$,

$$\iiint \vec{\nabla} \, \varphi \, dv = \iint \varphi \, \hat{n} \, dS$$

where \hat{n} is the outward drawn unit normal vector to the surface S.

(c) If V is the region bounded by the planes x = 0, y = 0, z = 0 and 2x + 2y + z = 4, then show that

(i)
$$\iiint_{V} \vec{\nabla} \times \vec{F} \ dV = -\frac{8}{3} \hat{k}$$

(ii)
$$\iiint_{V} \vec{\nabla} \cdot \vec{F} \ dV = \frac{16}{3} \text{ where } \vec{F} = (3x^2 - 8z)\hat{i} - 2xy \,\hat{j} - 8x \,\hat{k}$$
 6+4

(d) Verify Green's theorem for the line integral $\oint_C (x^2 + xy) dx + xdy$, where C is the bounding curve of

the region traced by $y = x^2 & y = x$.

10

10

Group - B

[Analytical Statics - II]

(Marks: 20)

Answer question no. 2 and any one question from the rest.

2. (a) Find the centre of gravity of the arc of the parabola $y^2 = 16x$ included between the lines x = 0 and x = 4.

Or.

- (b) Find the condition of stability of equilibrium of a mechanical system having one degree of freedom.
- 3. A solid frustum of a paraboloid of revolution of height h unit and latus rectum 8 unit rests with its vertex on the vertex of a paraboloid of revolution whose latus rectum is 4 unit. Show that the equilibrium is stable if h < 2.
- **4.** Forces \vec{X} , $2\vec{X}$, $3\vec{X}$ act along the vectors $\hat{i} + \hat{j} \hat{k}$, $\hat{i} \hat{j} + \hat{k}$ and $-\hat{i} + \hat{j} + \hat{k}$ respectively. Find the resultant wrench, pitch and intensity.
- 5. A force \vec{P} acts along the axis of x and another force $n\vec{P}$, where n is a positive integer, acts along a generator of the cylinder $x^2 + y^2 = a^2$. Show that the central axis lies on the cylinder

$$n^{2}(nx-z)^{2} + (1+n^{2})^{2}y^{2} = n^{4}a^{2}.$$

6. State and establish the principle of virtual work for a system of co-planar forces acting on a rigid body.

Group - C

[Analytical Dynamics of a Particle - II]

(Marks: 20)

Answer question no. 7 and any one question from the rest.

7. (a) A particle moves with central acceleration $\frac{1}{r^3}$. Where r is the distance of particle from centre of force. If it be projected from an apse at a distance 'a' from the centre of force with a velocity equal to $\sqrt{2}$ times that in a circle, find the path.

Or,

(b) Classify the equilibrium point for the linear system $AX = \overset{\bullet}{X}$, where $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $X = \begin{pmatrix} x \\ y \end{pmatrix}$ and $\dot{X} = \frac{dX}{dt}$,

for different values of the scalars a, b, c and d.

4

8. A particle of mass M is at rest and begins to move under the action of a constant force \vec{F} in a fixed direction. It encounters the resistance of a stream of fine dust moving in the opposite direction with velocity \vec{u} , which deposits matter on it at a constant rate σ . Show that its mass will be m, when it has

travelled a distance
$$\frac{k}{\sigma^2} \left[m - M \left\{ 1 + \log \left(\frac{m}{M} \right) \right\} \right]$$
 where $k = F - \sigma u$.

[F and u are the magnitudes of the force \vec{F} and the velocity \vec{u} respectively].

- 9. A small bead starts sliding down a semicircular wire of radius 'a' with coefficient of friction μ. If it starts with a velocity 'u' from one extreme point in the upper end, find the time taken to slide down to the lowest point (Assume that the wire is fixed in a horizontal base with its centre upwards and the diameter of the free ends is horizontal). Also find the increased velocity at that point.
- **10.** A particle describes an ellipse under inverse square law about a focus. If it is projected with a velocity of magnitude *V* from a point at a distance *l* from the centre of force, find the periodic time.
- 11. Determine the eigenvalues and corresponding eigenvectors of the following linear dynamical system:

$$\frac{dx}{dt} = 2x + y$$
$$\frac{dy}{dt} = x + 2y$$

Classify its equilibrium points.

6+6+4

16